3.5.24 \(\int \frac {x^3 (a+b x^2)^p}{(d+e x)^3} \, dx\) [424]

3.5.24.1 Optimal result
3.5.24.2 Mathematica [A] (verified)
3.5.24.3 Rubi [A] (verified)
3.5.24.4 Maple [F]
3.5.24.5 Fricas [F]
3.5.24.6 Sympy [F(-1)]
3.5.24.7 Maxima [F]
3.5.24.8 Giac [F]
3.5.24.9 Mupad [F(-1)]

3.5.24.1 Optimal result

Integrand size = 20, antiderivative size = 416 \[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\frac {d^3 \left (a+b x^2\right )^{1+p}}{2 e^2 \left (b d^2+a e^2\right ) (d+e x)^2}-\frac {d^2 \left (3 a e^2+b d^2 (2+p)\right ) \left (a+b x^2\right )^{1+p}}{e^2 \left (b d^2+a e^2\right )^2 (d+e x)}-\frac {\left (3 a^2 e^4+a b d^2 e^2 (6+7 p)+b^2 d^4 \left (3+5 p+2 p^2\right )\right ) x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{e^3 \left (b d^2+a e^2\right )^2}+\frac {\left (a^2 e^4+a b d^2 e^2 (5+6 p)+b^2 d^4 \left (3+5 p+2 p^2\right )\right ) x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e^3 \left (b d^2+a e^2\right )^2}+\frac {d \left (3 a^2 e^4+a b d^2 e^2 (6+7 p)+b^2 d^4 \left (3+5 p+2 p^2\right )\right ) \left (a+b x^2\right )^{1+p} \operatorname {Hypergeometric2F1}\left (1,1+p,2+p,\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 e^2 \left (b d^2+a e^2\right )^3 (1+p)} \]

output
1/2*d^3*(b*x^2+a)^(p+1)/e^2/(a*e^2+b*d^2)/(e*x+d)^2-d^2*(3*a*e^2+b*d^2*(2+ 
p))*(b*x^2+a)^(p+1)/e^2/(a*e^2+b*d^2)^2/(e*x+d)-(3*a^2*e^4+a*b*d^2*e^2*(6+ 
7*p)+b^2*d^4*(2*p^2+5*p+3))*x*(b*x^2+a)^p*AppellF1(1/2,1,-p,3/2,e^2*x^2/d^ 
2,-b*x^2/a)/e^3/(a*e^2+b*d^2)^2/((1+b*x^2/a)^p)+(a^2*e^4+a*b*d^2*e^2*(5+6* 
p)+b^2*d^4*(2*p^2+5*p+3))*x*(b*x^2+a)^p*hypergeom([1/2, -p],[3/2],-b*x^2/a 
)/e^3/(a*e^2+b*d^2)^2/((1+b*x^2/a)^p)+1/2*d*(3*a^2*e^4+a*b*d^2*e^2*(6+7*p) 
+b^2*d^4*(2*p^2+5*p+3))*(b*x^2+a)^(p+1)*hypergeom([1, p+1],[2+p],e^2*(b*x^ 
2+a)/(a*e^2+b*d^2))/e^2/(a*e^2+b*d^2)^3/(p+1)
 
3.5.24.2 Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 436, normalized size of antiderivative = 1.05 \[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\frac {\left (a+b x^2\right )^p \left (\frac {6 d^2 \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \operatorname {AppellF1}\left (1-2 p,-p,-p,2-2 p,\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{(-1+2 p) (d+e x)}-\frac {d^3 \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \operatorname {AppellF1}\left (2-2 p,-p,-p,3-2 p,\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{(-1+p) (d+e x)^2}-\frac {3 d \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \operatorname {AppellF1}\left (-2 p,-p,-p,1-2 p,\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{p}+2 e x \left (1+\frac {b x^2}{a}\right )^{-p} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )\right )}{2 e^4} \]

input
Integrate[(x^3*(a + b*x^2)^p)/(d + e*x)^3,x]
 
output
((a + b*x^2)^p*((6*d^2*AppellF1[1 - 2*p, -p, -p, 2 - 2*p, (d - Sqrt[-(a/b) 
]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)])/((-1 + 2*p)*((e*(-Sqrt[-( 
a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x)) - 
 (d^3*AppellF1[2 - 2*p, -p, -p, 3 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), ( 
d + Sqrt[-(a/b)]*e)/(d + e*x)])/((-1 + p)*((e*(-Sqrt[-(a/b)] + x))/(d + e* 
x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x)^2) - (3*d*AppellF1[-2 
*p, -p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/ 
(d + e*x)])/(p*((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x 
))/(d + e*x))^p) + (2*e*x*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/( 
1 + (b*x^2)/a)^p))/(2*e^4)
 
3.5.24.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 387, normalized size of antiderivative = 0.93, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {603, 27, 2182, 27, 719, 238, 237, 504, 334, 333, 353, 78}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx\)

\(\Big \downarrow \) 603

\(\displaystyle \frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}-\frac {\int -\frac {2 \left (b x^2+a\right )^p \left (\frac {a d^2}{e}-\left (\frac {b (p+1) d^2}{e^2}+a\right ) x d+\left (\frac {b d^2}{e}+a e\right ) x^2\right )}{(d+e x)^2}dx}{2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (b x^2+a\right )^p \left (\frac {a d^2}{e}-\left (\frac {b (p+1) d^2}{e^2}+a\right ) x d+\left (\frac {b d^2}{e}+a e\right ) x^2\right )}{(d+e x)^2}dx}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 2182

\(\displaystyle \frac {-\frac {\int \frac {\left (a d e^2 \left (\frac {b (p+1) d^2}{e}+2 a e\right )-\left (b^2 \left (2 p^2+5 p+3\right ) d^4+a b e^2 (6 p+5) d^2+a^2 e^4\right ) x\right ) \left (b x^2+a\right )^p}{e^2 (d+e x)}dx}{a e^2+b d^2}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\left (a d e \left (b (p+1) d^2+2 a e^2\right )-\left (b^2 \left (2 p^2+5 p+3\right ) d^4+a b e^2 (6 p+5) d^2+a^2 e^4\right ) x\right ) \left (b x^2+a\right )^p}{d+e x}dx}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 719

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \int \frac {\left (b x^2+a\right )^p}{d+e x}dx}{e}-\frac {\left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \int \left (b x^2+a\right )^pdx}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 238

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \int \frac {\left (b x^2+a\right )^p}{d+e x}dx}{e}-\frac {\left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \int \left (\frac {b x^2}{a}+1\right )^pdx}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 237

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \int \frac {\left (b x^2+a\right )^p}{d+e x}dx}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 504

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \left (d \int \frac {\left (b x^2+a\right )^p}{d^2-e^2 x^2}dx-e \int \frac {x \left (b x^2+a\right )^p}{d^2-e^2 x^2}dx\right )}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 334

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \left (d \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \int \frac {\left (\frac {b x^2}{a}+1\right )^p}{d^2-e^2 x^2}dx-e \int \frac {x \left (b x^2+a\right )^p}{d^2-e^2 x^2}dx\right )}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 333

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \left (\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d}-e \int \frac {x \left (b x^2+a\right )^p}{d^2-e^2 x^2}dx\right )}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 353

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \left (\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d}-\frac {1}{2} e \int \frac {\left (b x^2+a\right )^p}{d^2-e^2 x^2}dx^2\right )}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

\(\Big \downarrow \) 78

\(\displaystyle \frac {-\frac {\frac {d \left (3 a^2 e^4+a b d^2 e^2 (7 p+6)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \left (\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-p,1,\frac {3}{2},-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d}-\frac {e \left (a+b x^2\right )^{p+1} \operatorname {Hypergeometric2F1}\left (1,p+1,p+2,\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 (p+1) \left (a e^2+b d^2\right )}\right )}{e}-\frac {x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} \left (a^2 e^4+a b d^2 e^2 (6 p+5)+b^2 d^4 \left (2 p^2+5 p+3\right )\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-p,\frac {3}{2},-\frac {b x^2}{a}\right )}{e}}{e^2 \left (a e^2+b d^2\right )}-\frac {d^2 \left (a+b x^2\right )^{p+1} \left (3 a e^2+b d^2 (p+2)\right )}{e^2 (d+e x) \left (a e^2+b d^2\right )}}{a e^2+b d^2}+\frac {d^3 \left (a+b x^2\right )^{p+1}}{2 e^2 (d+e x)^2 \left (a e^2+b d^2\right )}\)

input
Int[(x^3*(a + b*x^2)^p)/(d + e*x)^3,x]
 
output
(d^3*(a + b*x^2)^(1 + p))/(2*e^2*(b*d^2 + a*e^2)*(d + e*x)^2) + (-((d^2*(3 
*a*e^2 + b*d^2*(2 + p))*(a + b*x^2)^(1 + p))/(e^2*(b*d^2 + a*e^2)*(d + e*x 
))) - (-(((a^2*e^4 + a*b*d^2*e^2*(5 + 6*p) + b^2*d^4*(3 + 5*p + 2*p^2))*x* 
(a + b*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, -((b*x^2)/a)])/(e*(1 + (b*x^ 
2)/a)^p)) + (d*(3*a^2*e^4 + a*b*d^2*e^2*(6 + 7*p) + b^2*d^4*(3 + 5*p + 2*p 
^2))*((x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/2, -((b*x^2)/a), (e^2*x^2)/d 
^2])/(d*(1 + (b*x^2)/a)^p) - (e*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 
 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*(b*d^2 + a*e^2)*(1 + p 
))))/e)/(e^2*(b*d^2 + a*e^2)))/(b*d^2 + a*e^2)
 

3.5.24.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 78
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b 
*c - a*d)^n*((a + b*x)^(m + 1)/(b^(n + 1)*(m + 1)))*Hypergeometric2F1[-n, m 
 + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m}, x] 
 &&  !IntegerQ[m] && IntegerQ[n]
 

rule 237
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[- 
p, 1/2, 1/2 + 1, (-b)*(x^2/a)], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[2*p 
] && GtQ[a, 0]
 

rule 238
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2) 
^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[(1 + b*(x^2/a))^p, x], x] / 
; FreeQ[{a, b, p}, x] &&  !IntegerQ[2*p] &&  !GtQ[a, 0]
 

rule 333
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[a^p*c^q*x*AppellF1[1/2, -p, -q, 3/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; F 
reeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[p] || GtQ[a, 
0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 334
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p])   Int[ 
(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, p, q}, x] && 
NeQ[b*c - a*d, 0] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 353
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] 
 :> Simp[1/2   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[ 
{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
 

rule 504
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c   I 
nt[(a + b*x^2)^p/(c^2 - d^2*x^2), x], x] - Simp[d   Int[x*((a + b*x^2)^p/(c 
^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d, p}, x]
 

rule 603
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol 
] :> With[{Qx = PolynomialQuotient[x^m, c + d*x, x], R = PolynomialRemainde 
r[x^m, c + d*x, x]}, Simp[d*R*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/((n + 
1)*(b*c^2 + a*d^2))), x] + Simp[1/((n + 1)*(b*c^2 + a*d^2))   Int[(c + d*x) 
^(n + 1)*(a + b*x^2)^p*ExpandToSum[(n + 1)*(b*c^2 + a*d^2)*Qx + b*c*R*(n + 
1) - b*d*R*(n + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, p}, x] && IGt 
Q[m, 1] && LtQ[n, -1] && NeQ[b*c^2 + a*d^2, 0]
 

rule 719
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] + 
Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, 
d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 

rule 2182
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> 
 With[{Qx = PolynomialQuotient[Pq, d + e*x, x], R = PolynomialRemainder[Pq, 
 d + e*x, x]}, Simp[e*R*(d + e*x)^(m + 1)*((a + b*x^2)^(p + 1)/((m + 1)*(b* 
d^2 + a*e^2))), x] + Simp[1/((m + 1)*(b*d^2 + a*e^2))   Int[(d + e*x)^(m + 
1)*(a + b*x^2)^p*ExpandToSum[(m + 1)*(b*d^2 + a*e^2)*Qx + b*d*R*(m + 1) - b 
*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, d, e, p}, x] && PolyQ[Pq, 
 x] && NeQ[b*d^2 + a*e^2, 0] && LtQ[m, -1]
 
3.5.24.4 Maple [F]

\[\int \frac {x^{3} \left (b \,x^{2}+a \right )^{p}}{\left (e x +d \right )^{3}}d x\]

input
int(x^3*(b*x^2+a)^p/(e*x+d)^3,x)
 
output
int(x^3*(b*x^2+a)^p/(e*x+d)^3,x)
 
3.5.24.5 Fricas [F]

\[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} x^{3}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(b*x^2+a)^p/(e*x+d)^3,x, algorithm="fricas")
 
output
integral((b*x^2 + a)^p*x^3/(e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3), x)
 
3.5.24.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\text {Timed out} \]

input
integrate(x**3*(b*x**2+a)**p/(e*x+d)**3,x)
 
output
Timed out
 
3.5.24.7 Maxima [F]

\[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} x^{3}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(b*x^2+a)^p/(e*x+d)^3,x, algorithm="maxima")
 
output
integrate((b*x^2 + a)^p*x^3/(e*x + d)^3, x)
 
3.5.24.8 Giac [F]

\[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\int { \frac {{\left (b x^{2} + a\right )}^{p} x^{3}}{{\left (e x + d\right )}^{3}} \,d x } \]

input
integrate(x^3*(b*x^2+a)^p/(e*x+d)^3,x, algorithm="giac")
 
output
integrate((b*x^2 + a)^p*x^3/(e*x + d)^3, x)
 
3.5.24.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^3 \left (a+b x^2\right )^p}{(d+e x)^3} \, dx=\int \frac {x^3\,{\left (b\,x^2+a\right )}^p}{{\left (d+e\,x\right )}^3} \,d x \]

input
int((x^3*(a + b*x^2)^p)/(d + e*x)^3,x)
 
output
int((x^3*(a + b*x^2)^p)/(d + e*x)^3, x)